Abstract
For smooth projective curves of genus g ≥ 4, the Clifford index is an important invariant which provides a bound for the dimension of the space of sections of a line bundle. This is the first step in distinguishing curves of the same genus. In this paper we generalise this to introduce Clifford indices for semistable vector bundles on curves. We study these invariants, giving some basic properties and carrying out some computations for small ranks and for general and some special curves. For curves whose classical Clifford index is two, we compute all values of our new Clifford indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.