Abstract

A modified Cauchy kernel is introduced over unbounded domains whose complement contains nonempty open sets. Basic results on Clifford analysis over bounded domains are now carried over to this more general context and to functions that are no longer assumed to be bounded. In particular Plemelj formulae are explicitly computed. Basic properties of the Cauchy transform over unbounded domains lying in a half space are investigated, and an orthogonal decomposition of theL2space for such a domain is set up. At the end a boundary value problem will be studied in the case of an unbounded domain without using weighted Sobolev spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.