Abstract

SummaryThe generalization of the Dirac and quaternion algebras to Riemannian spaces is outlined. The components of various elements of the algebras are interpreted as physical quantities (tensors) and their symmetries and algebraic properties are linked with the properties of the algebra. The generalization of the quaternion algebra is of particular interest in that it resolves the anomalies that arise in the usual identification of quaternions with rank two spinors. Algebraic expressions for the electromagnetic energy momentum tensor, the Ricci tensor and Einstein tensor are obtained in both E-number and quaternion form. Extension of the principles to EF-numbers yields a proof of the symmetry properties of Bel's tensor and a simple expression for its divergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.