Abstract

Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1–2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.

Highlights

  • Bats and toothed whales have independently evolved a sophisticated biosonar system [1,2], allowing both clades to diversify and occupy many different niches [3,4]

  • Some species forage on deep-sea squid at mesopelagic depths, others prey on large schools of fish sparsely distributed in oceanic habitats or on individual shrimp and fish encountered in shallow river systems inhabited by several species of river dolphins, including Irrawaddy and Ganges river dolphins [9]

  • While the biosonar signals of many marine toothed whales have been studied in detail [10,11,12], we know little about the polyphyletic assembly of true river dolphins and how the biosonar of these old lineages have evolved to their freshwater habitat [13]

Read more

Summary

Introduction

Bats and toothed whales have independently evolved a sophisticated biosonar system [1,2], allowing both clades to diversify and occupy many different niches [3,4]. A polyphyletic assemblage of porpoises, six non-whistling delphinids of the Cephalorhynchus and Lagenorhynchus families, pygmy sperm whales (Kogia sp.), and the Franciscana dolphin (Pontoporia franciscana) all use Narrow Band High Frequency (NBHF) clicks where energy is concentrated in a narrow frequency band around 130 kHz [27]. These animals seem to produce nearly as directional biosonar signals as delphinids [15,27,28] but at lower source levels [27,28,29]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.