Abstract

Gallic acid is a vegetable-derived and highly bioactive phenolic acid, but its antioxidant capacity is sensitive to environmental conditions. Chitosan is a biopolymer capable of exerting significant protection to various molecules, including phenolic compounds. A chitosan derivative that extends the antioxidant activity of gallic acid was synthesized by click chemistry and characterized by FT-IR, 1H NMR, and antioxidant capacity assays. Our results show that synthesized polymeric solutions and nanoparticles of N-(gallic acid) chitosan were both internalized by rat brain cells, processes that were modulated by extracellular Ca2+ and Na+. Their internalization was supported by dynamic light scattering and ζ-potential analyses, while Ca2+ imaging recordings performed in brain cells revealed the potential biological effect of N-(gallic acid) chitosan. We conclude that the synthesis of an N-(gallic acid) chitosan derivative through click chemistry is viable and may serve as strategy to prolong its antioxidant activity and to study its biological effects in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.