Abstract

Protein therapy provides a powerful alternative to small-molecule-based therapy, especially on cellular targets that are normally considered to be less druggable. Intracellular protein delivery, in particular, in a cell-type-specific manner, is still highly challenging. At present, few general strategies are available for the robust and selective intracellular delivery of proteins. In this Letter, by using zeolitic imidazolate framework-8 (ZIF-8) as protein-encapsulated nanoparticles and simultaneous doping with norbornene-modified imidazole (MIM-Nor), followed by surface attachment of the resulting nanoparticles with cetuximab (Cet) through click chemistry, we successfully synthesized Cet@protein@ZIF-8N, which was subsequently used for the selective intracellular delivery of functional proteins to epidermal-growth-factor-receptor (EGFR)-overexpressed cells. Both in-cell and in vivo experiments proved that Cet@RNase A@ZIF-8N can effectively deliver RNase A with the retention of selective inhibition. Furthermore, the same strategy was successfully applied to cell-type-specific gene editing through the delivery of a Cas9/sgRNA complex to knockdown the endogenous expression of glutathione peroxidase (GPX4), a key protein in ferroptosis. Our new system thus has potential implications in future cancer treatment and the development of precision medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call