Abstract

AbstractSelf‐immolative polymers (SIPs) are a class of degradable macromolecules that undergo stimuli‐triggered head‐to‐tail depolymerization. However, a general approach to readily end‐functionalize SIP precursors for programmed degradation remains elusive, restricting access to complex, functional SIP‐based materials. Here we present a “click to self‐immolation” strategy based on aroyl azide‐capped SIP precursors, enabling the facile construction of diverse SIPs with different trigger units through a Curtius rearrangement and alcohol/thiol‐isocyanate “click” reaction. This strategy is also applied to polymer‐polymer coupling to access fully depolymerizable block copolymer amphiphiles, even combining different SIP backbones. Our results demonstrate that the depolymerization can be actuated efficiently under physiologically‐relevant conditions by the removal of the trigger units and ensuing self‐immolation of the p‐aminobenzyl carbonate linkage, indicating promise for controlled release applications involving nanoparticles and hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.