Abstract

The availability of several bioorthogonal reactions that can proceed selectively and efficiently under physiologically relevant conditions has garnered the interest of biochemists and organic chemists alike. Bioorthogonal cleavage reactions represent the latest innovation in click chemistry. Here, we employed the Staudinger ligation reaction to release radioactivity from immunoconjugates, improving target-to-background ratios. In this proof-of-concept study, model systems, including the anti-HER2 antibody trastuzumab, radioisotope I-131, and a newly synthesized bifunctional phosphine, were used. Staudinger ligation occurred when biocompatible N-glycosyl azides reacted with this radiolabeled immunoconjugate, leading to cleavage of the radioactive label from the molecule. We demonstrated this click cleavage in vitro and in vivo. Biodistribution studies in tumor models showed that radioactivity was eliminated from the bloodstream, thereby improving tumor-to-blood ratios. SPECT imaging revealed that tumors could be visualized with enhanced clarity. Our simple approach represents a novel application of bioorthogonal click chemistry in the development of antibody-based theranostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.