Abstract

A calcium-chitosan-triazole nanocomplex (Ca@CS-Tz) was synthesized via the robust copper catalyzed azide-alkyne cycloaddition using calcium carbide (CaC2) as an in-situ source of acetylene. The nanocomplex was characterized by various techniques and it was proved to be an efficient drug carrier with satisfactory antimicrobial and antioxidant properties. Quercetin loaded nanocomplex (encapsulation efficiency- 68.2 ± 1.0 %) was studied for targeted drug release and the drug release after 120 h was found to be 80.7 ± 0.8 % and 8.69 ± 0.5 % at pH 5.0 and 7.4 respectively. On biological evaluation, the nanocomplex showed enhanced antimicrobial activity against gram-negative bacteria Escherichia coli (E. coli), gram-positive bacteria Bacillus subtilis (B. subtilis) and a fungi Aspergillus niger (A. niger). Moreover, the synthesized Ca@CS-Tz nanocomplex also exhibited significant antioxidant property. Herein, the novel results corresponding to the antimicrobial effect on A. niger and drug delivery studies performed using our previously synthesized chitosan triazole (CS-triazole) derivative have also been reported. Finally, the results of the present study were compared to the results obtained to our previously reported derivative. The incorporation of calcium ions into CS-triazole can lead to the utilization of this complex in various other biomedical applications e.g. bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.