Abstract
A series of 3,6-bis(4-triazolyl)pyridazines equipped with terminal phenyl substituents with varying degree of fluorination were synthesized by using the facile copper-catalyzed azide-alkyne cycloaddition and their structures were thoroughly investigated in the gas phase, in solution, and in the solid state by employing DFT calculations, NMR spectroscopy, and single-crystal X-ray diffraction, respectively. On the molecular level, their structure is governed by the strong preference of the triazole-pyridazine linkages for the anti-conformation. The supramolecular organization of the molecules in the crystalline solid is controlled by π-stacking, C-H⋅⋅⋅π as well as C-F⋅⋅⋅H interactions. The latter can conveniently be tuned by the number and position of fluorine substituents in the terminal phenyl units, giving rise to either herringbone-like, 1D or 2D lamellar packing. Electrochemistry and optical spectroscopy of all compounds suggest that they might find use as electron-transporting/hole-blocking materials in organic electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.