Abstract

We compare immobilization methods for oligonucleotides on carboxylic acid surfaces with the goal of improving hybridization efficiency for single-stranded DNA (ssDNA) bioassays. When immobilized via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), ssDNA (either modified with a terminal amine or not) specifically binds to the surface; without EDC, binding is minimal. EDC-activated probes can, however, bind covalently to the surface through nucleobase as well as terminal amino groups. Unmatched base pairs from the former are detected via melting curve analysis: the target begins to unwind at∼40°C below the double-strand melting temperature of∼64°C. To eliminate such backbone binding, we immobilized azide-functionalized DNA via click chemistry, resulting in hybridization efficiencies 5 times higher than with EDC. This improvement, and the room-temperature hybridization of the click chemistry process, make it an important alternative to EDC for reliable DNA assays with maximum specificity and sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.