Abstract

Amides and esters are prevalent chemicals in Nature, industry and academic laboratories. Thus, it is not surprising that a plethora of synthetic methods for these compounds has been developed along the years. However, these methods are not 100% atom economical and generally require harsh reagents or reaction conditions. Here we show a “spring–loaded”, 100% atom–efficient amidation and esterification protocol which consists in the ring opening of cyclopropenones with amines or alcohols. Some alkyl amines react spontaneously at room temperature in a variety of solvents and reaction conditions, including water at different pHs, while other alkyl amines, aromatic amines and alcohols react in the presence of catalytic amounts of simple Cu2+ salts or solids. A modular reactivity pattern (alkyl amines >> alkyl alcohols >> phenols >> aromatic amines) enables to design orthogonal and one–pot reactions on well–defined catalytic Multimetal–Organic Frameworks (M–MOFs, M= Cu, Ni, Pd), to easily functionalize the resulting cinnamides and cinnamic esters to more complex molecules. The strong resemblance of the amidation and esterification reaction conditions here reported with the copper–catalyzed azide–alkyne cycloaddition (CuAAC) allows to define this fast, clean and flexible protocol as a click reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.