Abstract
Remote sensing (RS) image change detection (CD) is the procedure of detecting the change regions that occur in the same area in different time periods. A lot of research has extracted deep features and fused multi-scale features by convolutional neural networks and attention mechanisms to achieve better CD performance, but these methods do not result in well-fused feature pairs of the same scale and features of different layers. To solve this problem, a novel CD network with symmetric structure called the channel-level hierarchical feature fusion network (CLHF-Net) is proposed. First, a channel-split feature fusion module (CSFM) with symmetric structure is proposed, which consists of three branches. The CSFM integrates feature information of the same scale feature pairs more adequately and effectively solves the problem of insufficient communication between feature pairs. Second, an interaction guidance fusion module (IGFM) is designed to fuse the feature information of different layers more effectively. IGFM introduces the detailed information from shallow features into deep features and deep semantic information into shallow features, and the fused features have more complete feature information of change regions and clearer edge information. Compared with other methods, CLHF-Net improves the F1 scores by 1.03%, 2.50%, and 3.03% on the three publicly available benchmark datasets: season-varying, WHU-CD, and LEVIR-CD datasets, respectively. Experimental results show that the performance of the proposed CLHF-Net is better than other comparative methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Symmetry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.