Abstract

With the advancement of technologies, automatic plant leaf disease detection has received considerable attention from researchers working in the area of precision agriculture. A number of deep learning-based methods have been introduced in the literature for automated plant disease detection. However, the majority of datasets collected from real fields have blurred background information, data imbalances, less generalization, and tiny lesion features, which may lead to over-fitting of the model. Moreover, the increased parameter size of deep learning models is also a concern, especially for agricultural applications due to limited resources. In this paper, a novel ClGan (Crop Leaf Gan) with improved loss function has been developed with a reduced number of parameters as compared to the existing state-of-the-art methods. The generator and discriminator of the developed ClGan have been encompassed with an encoder–decoder network to avoid the vanishing gradient problem, training instability, and non-convergence failure while preserving complex intricacies during synthetic image generation with significant lesion differentiation. The proposed improved loss function introduces a dynamic correction factor that stabilizes learning while perpetuating effective weight optimization. In addition, a novel plant leaf classification method ClGanNet, has been introduced to classify plant diseases efficiently. The efficiency of the proposed ClGan was validated on the maize leaf dataset in terms of the number of parameters and FID score, and the results are compared against five other state-of-the-art GAN models namely, DC-GAN, W-GAN, WGanGP, InfoGan, and LeafGan. Moreover, the performance of the proposed classifier, ClGanNet, was evaluated with seven state-of-the-art methods against eight parameters on the original, basic augmented, and ClGan augmented datasets. Experimental results of ClGanNet have outperformed all the considered methods with 99.97% training and 99.04% testing accuracy while using the least number of parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call