Abstract
Community-level event (CLE) datasets, such as police reports of crime events, contain abundant semantic information of event situations, and descriptions in a geospatial-temporal context. They are critical for frontline users, such as police officers and social workers, to discover and examine insights about community neighborhoods. We propose CLEVis, a neighborhood visual analytics system for CLE datasets, to help frontline users explore events for insights at community regions of interest, namely fine-grained geographical resolutions, such as small neighborhoods around local restaurants, churches, and schools. CLEVis fully utilizes semantic information by integrating automatic algorithms and interactive visualizations. The design and development of CLEVis are conducted with solid collaborations with real-world community workers and social scientists. Case studies and user feedback are presented with real-world datasets and applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.