Abstract

BackgroundG-quadruplexes are polymorphic non-canonical nucleic acid conformations involved both in physiological and pathological processes. Given the high degree of folding heterogeneity and comparable conformational stabilities, different G-quadruplex forms can occur simultaneously, hence rendering the use of basic instrumental methods for structure determination, like X-ray diffraction or NMR, hardly useful. Footprinting techniques represent valuable and relatively rapid alternative to characterize DNA folding. The natural diterpenoid clerocidin is an alkylating agent that specifically reacts at single-stranded DNA regions, with different mechanisms depending on the exposed nucleotide. MethodsClerocidin was used to footprint G-quadruplex structures formed by telomeric and oncogene promoter sequences (c-myc, bcl-2, c-kit2), and by the thrombin binding aptamer. ResultsThe easy modulability of CL reactivity towards DNA bases permitted to discriminate fully and partially protected sites, highlights stretched portions of the G-quadruplex conformation, and discriminate among topologies adopted by one sequence in different environmental conditions. Importantly, CL displayed the unique property to allow detection of G-quadruplex folding within a duplex context. ConclusionsCL is a finely performing new tool to unveil G-quadruplex arrangements in DNA sequences under genomically relevant conditions. General significanceNucleic acid G-quadruplex structures are an emerging research field because of the recent indication of their involvement in a series of key biological functions, in particular in regulation of proliferation-associated gene expression. The use of clerocidin as footprinting agent to identify G-quadruplex structures under genomically relevant conditions may allow detection of new G-quadruplex-based regulatory regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.