Abstract
Lung cancer is the leading cause of cancer-related death worldwide and resistance to chemotherapeutic drugs is the major obstacle for effective treatment. The present study investigated the anticancer potential of cleistanthoside A tetraacetate (CAT), a derivative of cleistanthoside A from Phyllanthus taxodiifolius Beille on human lung cancer cells, LU-1. Multiple molecular approaches were used in this study and include measuring the anti-proliferative effect of CAT in LU-1 cells using flow cytometry; evaluating the induction of apoptosis by monitoring DNA fragmentation, phosphatidylserine externalization and activation of caspase-3 activity; and assaying the expression of regulatory proteins involved in cell cycle arrest and apoptosis using immunoblots. CAT potently inhibited LU-1 proliferation through an early G1 arrest with down-regulation of cdk4/6 and cyclin D1 proteins. CAT also inhibited DNA topoisomerase IIα activity resulting in DNA damage and increased the expression of the p53 protein with the subsequent induction of apoptosis. A decrease in the Bcl-2/Bax ratio, activation of caspase-3 activity and cleavage of PARP accompanied apoptosis. CAT is highly toxic to lung cancer and its primary targets are the inhibition of topoisomerase IIα activity and inducing apoptosis through a G1 arrest. These properties indicate that CAT is a promising anticancer agent for treatment of lung cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.