Abstract
By means of a Clebsch representation which differs from that previously applied to electromagnetic field theory it is shown that Maxwell's equations are derivable from a variational principle. In contrast to the standard approach, the Hamiltonian complex associated with this principle is identical with the generally accepted energy-momentum tensor of the fields. In addition, the Clebsch representation of a contravariant vector field makes it possible to consistently construct a field theory based upon a direction-dependent Lagrangian density (it is this kind of Lagrangian density that may arise when developing the Finslerian extension of general relativity). The corresponding field equations are proved to be independent of any gauge of Clebsch potentials. The law of energy-momentum conservation of the field appears to be covariant and integrable in a rather wide class of direction-dependent Lagrangian densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.