Abstract

Initiation factor (eIF) 4G plays a key role in the regulation of translation, acting as a bridge between eIF4E and eIF3, to allow an mRNA molecule to associate with the 40S ribosomal subunit. In this study, we show that activation of the Fas/CD95 receptor complex in Jurkat cells induces the degradation of eIF4G, the inhibition of total protein synthesis and cell death. These responses were prevented by the caspase inhibitors, zVAD.FMK and zDEVD.FMK. We also show that, in contrast to Saccharomyces cerevisiae, although rapamycin caused a modest inhibition of protein synthesis it did not induce apoptosis or the cleavage of eIF4G. Studies with the specific inhibitor, SB203580, have shown that signalling through the p38 MAP kinase pathway is not required for either the Fas/CD95-induced cleavage of eIF4G or cell death. These data suggest that the cleavage of eIF4G and the inhibition of translation play an integral role in Fas/CD95-induced cell death in Jurkat cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call