Abstract

BackgroundEntry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike) of the severe acute respiratory syndrome coronavirus (SARS-CoV) to cleavage by various airway proteases.Methodology/Principal FindingsPurified triSpike proteins were readily cleaved in vitro by three different airway proteases: trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC) and amino acid sequencing analyses identified two arginine residues (R667 and R797) as potential protease cleavage site(s). The effect of protease-dependent enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE. Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A). Mutation of R667 or R797 did not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment.Conclusions/SignificanceThese results suggest that SARS S-protein is susceptible to airway protease cleavage and, furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV.

Highlights

  • Proteolytic cleavage of the viral envelope glycoprotein into a receptor binding and a fusogenic transmembrane subunit is important to regulate virus entry and infectivity [1]

  • Proteolytic modification of spike glycoproteins is the major determinant of virus tropism and pathogenicity as shown in pneumotropic viruses whose infectivity is determined by airway proteases [5,36,37]

  • A monobasic cleavage site has been identified in various viral glycoproteins and is recognized by proteases secreted by epithelial cells [2]

Read more

Summary

Introduction

Proteolytic cleavage of the viral envelope glycoprotein into a receptor binding and a fusogenic transmembrane subunit is important to regulate virus entry and infectivity [1]. A typical example is influenza A virus, where virus-cell fusion activity is induced by post-translational proteolytic cleavage of the envelope glycoprotein that is mediated by trypsin-like protease in the bronchial epithelium and airway secretion [9]. Several proteases such as tryptase clara, mini-plasmin, ectopic anionic trypsin, mast-cell tryptase and tryptase TC30, which have been isolated from airway epithelial, can selectivity cleave the consensus cleavage motif of human influenza A virus envelope glycoprotein [10,11,12,13] and determine the virus tropism and infectivity. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike) of the severe acute respiratory syndrome coronavirus (SARS-CoV) to cleavage by various airway proteases

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.