Abstract
ATP-dependent Lon proteases function in bacterial pathogenesis by regulating the expression of the Type III secretion system; however, little is known about how Lon proteases regulate fungal pathogenesis. We previously investigated Lon-binding proteins involved in fungal pathogenesis that interact with PrePL, the smallest Magnaporthe oryzae Lon-binding protein. Here, we show that Lon cleaves PrePL and produces Pc, an extracellular 11-kDa isoform with catalase and peroxidase activity. The ΔPrePL loss-of-function strain showed stronger sporulation and accelerated disease development, suggesting a temporally specific negative regulatory mechanism controlled by PrePL in disease progression. Neither the truncated Pc, nor the full-length PrePL missing the Lon cleavage site complemented the ΔPrePL phenotype, suggesting that full-length PrePL and Pc both function in fungal development. PrePL targeted to the mitochondria undergoes hydrolysis by Lon to produce Pc, which accumulates in the fungal apoplast. Importantly, recombinant Pc induced plant defence responses and cell death after being infiltrated into selected plant leaves, indicating that it functions as an avirulence factor. This work thus reveals a novel pathogenic factor in the fungal Lon-mediated pathway. Additionally, our results provide new insight into the functions of a full-length protein and its cleaved isoform in fungal pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.