Abstract

Potassium channel Kv2.1 regulates potassium current in cortical neurons and potassium efflux is necessary for cell apoptosis. As a major component of delayed rectifier current potassium channels, Kv2.1 forms clusters in the membrane of hippocampal neurons. BACE2 is an aspartyl protease to cleave APP to prevent the generation of Aβ, a central component of neuritic plaques in Alzheimer's brain. We now identified Kv2.1 as a novel substrate of BACE2. We found that BACE2 cleaved Kv2.1 at Thr376, Ala717, and Ser769 sites and disrupted Kv2.1 clustering on cell membrane, resulting in decreased Ik of Kv2.1 and a hyperpolarizing shift in primary neurons. Furthermore, we discovered that the BACE2-cleaved Kv2.1 forms, Kv2.1-1-375, Kv2.1-1-716, and Kv2.1-1-768, depressed the delayed rectifier Ik surge and reduced neuronal apoptosis. Our study suggests that BACE2 plays a neuroprotective role by cleavage of Kv2.1 to prevent the outward potassium currents, a potential new target for Alzheimer's treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.