Abstract

In contrast to tertiary phosphine oxides, the deoxygenation of aminophosphine oxides is effectively impossible due to the need to break the immensely strong and inert PO bond in the presence of a relatively weak and more reactive PN bond. This long-standing problem in organophosphorus synthesis is solved by use of oxalyl chloride, which chemoselectively cleaves the PO bond forming a chlorophosphonium salt, leaving the PN bond(s) intact. Subsequent reduction of the chlorophosphonium salt with sodium borohydride forms the P(III) aminophosphine borane adduct. This simple one-pot procedure was applied with good yields for a wide range of PN-containing phosphoryl compounds. The borane product can be easily deprotected to produce the free P(III) aminophosphine. Along with no observed PN bond cleavage, the use of sodium borohydride also permits the presence of ester functional groups in the substrate. The availability of this methodology opens up previously unavailable synthetic options in organophosphorus chemistry, two of which are exemplified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call