Abstract
The SOS response to DNA damage in Escherichia coli involves at least 43 genes, all under the control of the LexA repressor. Activation of these genes occurs when the LexA repressor cleaves itself, a reaction catalyzed by an active, extended RecA filament formed on DNA. It has been shown that the LexA repressor binds within the deep groove of this nucleoprotein filament, and presumably, cleavage occurs in this groove. Bacteriophages, such as λ, have repressors (cI) that are structural homologs of LexA and also undergo self-cleavage when SOS is induced. It has been puzzling that some mutations in RecA that affect the cleavage of repressors are in the C-terminal domain (CTD) far from the groove where cleavage is thought to occur. In addition, it has been shown that the rate of cleavage of cI by RecA is dependent upon both the substrate on which RecA is polymerized and the ATP analog used. Electron microscopy and three-dimensional reconstructions show that the conformation and dynamics of RecA's CTD are also modulated by the polynucleotide substrate and ATP analog. Under conditions where the repressor cleavage rates are the highest, cI is coordinated within the groove by contacts with RecA's CTD. These observations provide a framework for understanding previous genetic and biochemical observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.