Abstract
Coxsackievirus B (CVB) 3C protease (3Cpro) plays a specific cleavage role on AU-rich binding factor (AUF1, also called hnRNP D), which consequently disputes the regulation of AUF1 on downstream molecules. In our study, the iTRAQ approach was first used to quantify the differentially expressed cellular proteins in AUF1-overexpressing HeLa cells, which provides straightforward insight into the role of AUF1 during viral infection. A total of 1,290 differentially expressed proteins (DEPs), including 882 upregulated and 408 downregulated proteins, were identified. The DEPs are involved in a variety of cellular processes via GO terms, protein–protein interactions, and a series of further bioinformatics analyses. Among the DEPs, some demonstrated important roles in cellular metabolism. In particular, DDX5 was further verified to be negatively regulated by AUF1 and increased in CVB-infected cells, which in turn promoted CVB replication. These findings provide potential novel ideas for exploring new antiviral therapy targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.