Abstract

This study identified the optimum conditions for cleavage of acetyl groups from wood hemicelluloses for possible conversion to salts of acetate or to acetic acid in kraft pulp mills. Acetyl groups in wood hemicelluloses can be hydrolyzed by either OH- (hydroxide) or H+ (hydronium) ions. Experimental data are presented for the extraction of industrial northeast hardwood chips using alkali streams that are available in the kraft pulp mills: caustic, green liquor, and white liquor. The effects of extraction time, chip soaking temperature, alkali concentration, and extraction temperature on cleavage of acetyl groups were investigated. Soaking at elevated temperature was found to be more effective than no soaking or soaking at room temperature. The rate of cleavage of acetyl groups from wood hemicelluloses was proportional to the initial hydroxide ion concentration in the liquor. Both white liquor and 0.5 N sodium hydroxide had higher rates of hydrolysis of acetyl groups compared to green liquor, which contained fewer hydroxide ions. The initial hydroxide ion concentration in the liquor also determined the mechanism by which acetyl groups were hydrolyzed from the hemicellulose backbone. If the extraction liquor contained excess hydroxide ions, then most acetyl groups were directly hydrolyzed from the xylan polymer to form sodium acetate, and the xylan remained in the wood, provided the temperature was low. The extraction temperature had a negligible effect on rate of cleavage of acetyl groups if the liquor contained excess hydroxide ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call