Abstract

Proteolytic processing of the respiratory syncytial virus F (fusion) protein results in the generation of the disulfide-linked subunits F1 and F2 and in the release of pep27, a glycopeptide originally located between the two furin cleavage sites FCS-1 (RKRR(136)) and FCS-2 (RAR/KR(109)). We made use of reverse genetics to study the importance of FCS-2 and of pep27 for BRSV replication in cell culture. Replacement of FCS-2 in the F protein of recombinant viruses by either of the sequences NANR(109), RANN(109) or SANN(109), respectively, abolished proteolytic processing at this position, whereas the cleavage of FCS-1 was not affected. All mutants replicated in calf kidney and Vero cells in the absence of exogenous trypsin, although somewhat higher titers of BRSV containing the NANR(109) or the RANN(109) motif were achieved in the presence of trypsin. The virus mutants showed a reduced cytopathic effect which was lowest in the case of the SANN(109) mutant. These findings demonstrate that cleavage at FCS-2 is dispensable for replication of respiratory syncytial virus in cell culture. A deletion mutant containing FCS-1 but lacking FCS-2 and most of pep27 replicated in cell culture as efficiently as the parental virus, indicating that this domain of the F protein is not essential for virus maturation and infectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call