Abstract

An experimental study was conducted of the depth of clear-water scour around the end of a square-edged bridge abutment terminating in the floodplain of a compound channel. The study's purpose was to improve current techniques of abutment scour prediction, which are based primarily on laboratory studies in rectangular channels. It is indicated that a discharge contraction ratio arising from a theoretical contraction scour analysis for equilibrium conditions can be used for explaining the effect of flow distribution on the local abutment scour depth in the case where significant backwater occurs from bridge contraction. The use of reference values of approach flow depth and velocity in the floodplain for undisturbed conditions without the bridge is shown to collapse experimental results for scour depth in both the case of a contraction with negligible backwater, and the case of a contraction with significant backwater in the bridge approach section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.