Abstract

The ability of boronate adsorption to clear Escherichia coli impurities directly from plasmid-containing lysates (∼pH 5.2) was evaluated. Results show that 3-aminophenyl boronate (PB) controlled pore glass (CPG) is able to adsorb not only those species that bear cis-diol groups (RNA, lipopolysaccharides-LPS), and are thus able to form covalent bonds with boronate, but also cis-diol-free proteins and genomic DNA (gDNA) fragments, while leaving most plasmid DNA in solution. Control runs performed with phenyl Sepharose and with PB-free CPG beads ruled out hydrophobic interactions with the phenyl ring and non-specific interactions with the glass matrix, respectively, as being responsible for RNA and gDNA adsorption. In batch mode, up to 97.6 ± 3.1% of RNA, 94.6 ± 0.8% of proteins and 96.7 ± 11.7% of gDNA were cleared after 30 min, with a plasmid yield of 64%. In fixed-bed mode, most of the plasmid was recovered in the flowthrough (96.2 ± 4.0%), even though the RNA (65.5 ± 2.8%), protein (84.4 ± 1.3%) and gDNA clearance (44.7 ± 14.1%) were not as effective. In both cases, the LPS content was removed to a residual value of less than 0.005 EU/ml. The method is fast and straightforward, circumvents the need for pre-treatment of the feed and may contribute to shorten plasmid purification processes, as the treated streams can proceed directly to the final polishing steps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call