Abstract

For the efficient design of bridge pier footings, computation of time-evolution of scour depth around bridge piers is essential. In this paper, a semi-empirical model is developed to estimate the temporal variation of clear-water scour depth at a couple of identical cylindrical uniform piers in tandem arrangement. The experiments are carried out using different pier size, pier spacing, and flow intensities. The model development is based on sediment continuity approach and volumetric sediment transport rate from the scour hole using a sediment pickup function. The model results are presented as design charts giving the relation between dimensionless scour depth and time for practical use. Results of the proposed model are in relatively good agreement with the experimental results, in the tested range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.