Abstract

To understand neural circuit mechanisms underlying behavior, it is crucial to observe the dynamics of neuronal structure and function in different regions of the brain. Since current noninvasive imaging technologies allow cellular-resolution imaging of neurons only within ~1 mm below the cortical surface, the majority of mouse brain tissue remains inaccessible. While miniature optical imaging probes allow access to deep brain regions, cellular-resolution imaging is typically restricted to a small tissue volume. To increase the tissue access volume, we developed a clear optically matched panoramic access channel technique (COMPACT). With probe dimensions comparable to those of common gradient-index lenses, COMPACT enables a two to three orders of magnitude greater tissue access volume. We demonstrated the capabilities of COMPACT by multiregional calcium imaging in mice during sleep. We believe that large-volume in vivo imaging with COMPACT will be valuable to a variety of deep tissue imaging applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call