Abstract

We have detected O VI 1031.93 A, 1037.62 A doublet absorption in a composite QSO spectrum formed from a large number of intervening C IV absorption systems. The detections constitute the first firm evidence for the presence of O VI in intervening QSO metal absorption systems. The equivalent width of the detected O VI absorption implies an O VI column density N(O VI) not less than 2.8 x 10 exp 14/sq cm. This value, together with the nondetection of the N V 1238.82 A, 1242.80 A doublet absorption, suggests that N(O VI)/N(N V) not less than 4.4. For collisionally ionized gas with a solar O to N abundance ratio in thermal equilibrium the above ratio requires a temperature T not less than 2.5 x 10 exp 5 K. It is found that C IV systems which show low-ionization species and those which do not both have associated O VI absorption, suggesting that O VI is probably present in all C IV systems. We also find that C IV systems which show low-ionization species on average have stronger high-ionization absorption lines than those which do not. A simple interpretation was given to explain this trend.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call