Abstract

We entertain the idea that the uncertainty relation is not a principle, but rather it is a consequence of quantum mechanics. The uncertainty relation is then a probabilistic statement and can be clearly evaded in processes which occur with a very small probability in a tiny sector of the phase space. This clear evasion is typically realized when one utilizes indirect measurements, and some examples of the clear evasion appear in the system with entanglement though the entanglement by itself is not essential for the evasion. The standard Kennard's relation and its interpretation remain intact in our analysis. As an explicit example, we show that the clear evasion of the uncertainty relation for coordinate and momentum in the diffraction process discussed by Ballentine is realized in a tiny sector of the phase space with a very small probability. We also examine the uncertainty relation for a two-spin system with the EPR entanglement and show that no clear evasion takes place in this system with the finite discrete degrees of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.