Abstract

Recently it has been demonstrated that digital holography is a powerful means allowing imaging of both amplitude and phase objects in turbid flowing media. However, in quasi-static turbid microfluidics, multiple scattering contributions through the colloids superimpose coherently to the recording device, resulting in speckle noise and hindering a clear vision of the objects. In this Letter we exploit the Brownian motion of the colloidal particles to get multiple uncorrelated holograms, and we combine them to reduce the speckle contrast. In this way we get a multi-look gain without losing image resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.