Abstract

This article studies self-supervised graph representation learning, which is critical to various tasks, such as protein property prediction. Existing methods typically aggregate representations of each individual node as graph representations, but fail to comprehensively explore local substructures (i.e., motifs and subgraphs), which also play important roles in many graph mining tasks. In this article, we propose a self-supervised graph representation learning framework named cluster-enhanced Contrast (CLEAR) that models the structural semantics of a graph from graph-level and substructure-level granularities, i.e., global semantics and local semantics, respectively. Specifically, we use graph-level augmentation strategies followed by a graph neural network-based encoder to explore global semantics. As for local semantics, we first use graph clustering techniques to partition each whole graph into several subgraphs while preserving as much semantic information as possible. We further employ a self-attention interaction module to aggregate the semantics of all subgraphs into a local-view graph representation. Moreover, we integrate both global semantics and local semantics into a multiview graph contrastive learning framework, enhancing the semantic-discriminative ability of graph representations. Extensive experiments on various real-world benchmarks demonstrate the efficacy of the proposed over current graph self-supervised representation learning approaches on both graph classification and transfer learning tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.