Abstract

Model calculations are used to explore the effects of the kinetics of diffusion of dissolved organic compounds into and out of low-permeability porous materials and of the rate of solution of nonaqueous phase liquid (NAPL) droplets (into the aqueous phase) on the rate of cleanup of contaminated aquifers. Two models are presented: (1) the flushing of organic compounds initially distributed as NAPL droplets in a fracture in a porous rock aquifer, and (2) the removal of organic compounds initially present as NAPL in an aquifer containing low-permeability porous clay lenses. NAPL droplet size is found to be of much less importance than the spacing of the fractures in the porous rock in the first model or the thickness of the clay lenses in the second.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.