Abstract
Chemical washing has been carried out to remediate soil contaminated with heavy metals. In this study, the appropriate washing conditions for N,N-bis(carboxymethyl)-L-glutamic acid (GLDA) combined with ascorbic acid were determined to remove As, Cd, and Pb in the soil from the smelting site. The mechanism of heavy metal removal by the washing agent was also clarified. The results showed that heavy metals in the soil from the smelting site can be effectively removed. The removal percentages of As, Cd, and Pb in the soil from the smelting site were found to be 34.49%, 63.26%, and 62.93%, respectively, under optimal conditions (GLDA and ascorbic acid concentration ratio of 5:20, pH of 3, washing for 60 min, and the liquid-to-solid ratio of 10). GLDA combined with ascorbic acid efficiently removes As, Cd, and Pb from the soil through synergistic proton obstruction, chelation, and reduction. GLDA can chelate with iron and aluminum oxides while directly chelate with Cd and Pb. Ascorbic acid can reduce both Fe(III) to Fe(II) and As(III) to As0. The dissolution of As was promoted by indirectly preempting the binding sites of iron and aluminum in the soil while those of Cd and Pb were improved by directly interrupting the binding sites. This study suggested that GLDA combined with ascorbic acid is an effective cleanup technology to remove As, Cd, and Pb simultaneously from contaminated smelting site soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.