Abstract
One of the most common problems encountered in water treatment applications of membranes is fouling. Natural organic matter (NOM) represents a particularly problematic foulant. Membranes may be fouled by relatively hydrophilic and/or hydrophobic NOM components, depending on NOM characteristics, membrane properties, and operating conditions. To maximize flux recovery for an NOM-fouled ultrafiltration membrane (NTR 7410), chemical cleaning and hydraulic rinsing with a relatively high cross-flow velocity were investigated as cleaning strategies. The modification of the membrane surface with either an anionic or a cationic surfactant was also evaluated to minimize membrane fouling and to enhance NOM rejection. Foulants from a hydrophobic NOM source (Orange County ground water (OC-GW)) were cleaned more effectively in terms of permeate flux by acid and caustic cleanings than foulants from a relatively hydrophilic NOM source (Horsetooth surface water (HT-SW)). An anionic surfactant (sodium dodecyl sulfate (SDS)) was not effective as a cleaning agent for foulants from either hydrophobic or hydrophilic NOM sources. High ionic strength cleaning with 0.1 M NaCl was comparatively effective in providing flux recovery for NOM-fouled membranes compared to other chemical cleaning agents. Increased cross-flow velocity and longer cleaning time influenced the efficiency of caustic cleaning, but not high ionic strength cleaning. The membrane was successfully modified only with the cationic surfactant; however, enhanced NOM rejection was accompanied by a significant flux reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.