Abstract
Abstract Fouling degrades the overall efficiency of the heat exchanger networks (HENs), which results in a significant economic loss. The mitigation of fouling in an operational HEN is carried out by optimizing the cleaning schedules of the heat exchangers. Although such approach can save costs, it is subjected to the exact implementation of the optimal cleaning schedule. Usually, the small and medium-scale process industries face difficulties in implementing such solutions due to limited resources, which forces them to rely on suboptimal cleaning schedules, such as postponing or avoiding few cleaning tasks. This work addresses this gap by optimizing the cleaning schedule considering the maintenance resource limitation. Our approach considers a mixed-integer linear programming (MILP) based optimization considering groupings of heat exchangers based on their spatial locations for ease of maintenance The proposed formulation is applied on a HEN with linear and asymptotic fouling, with and without cleaning cost. The results show that the approach can prevent a considerable economic loss, which would incur due to suboptimal cleaning schedules due to resource limitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.