Abstract

This paper presents the results of a study of the hydrogen-passivated Si(100) surface prepared by a remote hydrogen plasma treatment which serves the dual purpose of cleaning and passivating the Si(100) surface prior to low temperature Si epitaxy by Remote Plasma-enhanced Chemical Vapor Deposition (RPCVD). The remote hydrogen plasma treatment was optimized for the purposes of cleaning and passivation, respectively. To achieve a clean, defect-free substrate surface, the remote hydrogen plasma process was first optimized using Transmission Electron Microscopy (TEM) and Auger Electron Spectroscopy (AES). For hydrogen passivation, the substrate temperature was varied from room temperature to 250° C in order to investigate the degree of passivation as a function of substrate temperature by examining the amount of oxygen readsorbed on the substrate surface after air exposure. Low temperature Si expitaxy was subsequently performed on the air-exposed substrates without further cleaning to evaluate the effectiveness of the hydrogen passivation. It was found that better Si surface passivation is achieved at lower substrate temperatures as evidenced by the fact that less oxygen is observed on the surface using AES and Secondary Ion Mass Spectroscopy (SIMS) analyses. The amount of readsorbed oxygen on the H-passivated Si surface after a two hour air exposure was found to be as low as 0.1 monolayer from SIMS analysis. Using Reflection High Energy Electron Diffraction (RHEED) analysis, different surface reconstructions ((3 × 1) and (1 × 1)) were observed for H-passivated Si surfaces passivated at various temperatures, which was correlated to the results of AES and SIMS analyses. Epitaxial growth of Si films at 305° C was achieved on the air-exposed Si substrates, indicating a chemically inert Si surface as a result of hydrogen passivation. A novel electron-beam-induced-oxygen-adsorptiom phenomena was observed on the Hpassivated Si surface. Scanning Auger Microscopy (SAM) analysis was performed to study the reaction kinetics as well as the nature of Si—H bonds on the H-passivated Si surface. Preliminary results show that there is a two-step mechanism involved, and oxygen adsorption on the H-passivated Si surface due to electron beam irradiation may be due to the formation of O-H groups rather than the creation of Si—O bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call