Abstract

Biohydrogen (bioH2) is recognized as a potential carbon-neutral energy vector, and developing novel methods has received increasing attention with a prime goal of producing H2 more efficient and cost effective manner. This study aimed to develop a unique reactor to investigate dark fermentative H2 production from poplar biomass using commercially available and inexpensive microorganism cultures. Therefore, six factors of the Box-Behnken design (BBD) were performed to evaluate the individual and combined effects of operational parameters: acid concentration (2–10%), biomass concentration (2–10 g), initial pH (5–8), temperature (30–40 °C), mixing ratio (150–350 rpm), and microorganism concentration (2–6 g) on bioH2 production. Among the operational parameters, the acid concentration was the most effective parameter on bioH2 production. The bioH2 production increased from 11.33 to 18.15 mg/g biomass with increasing acid concentration from 6 to 10%. Moreover, the optimum levels of operational variables were as follows: acid concentration of 9.9%, biomass amount of 2 g, pH of 6.56, temperature of 35 °C, mixing ratio of 345 rpm, and microorganism amount of 4.5 g for the highest bioH2 production of 20 mg/g-biomass according to the experimental design. Consequently, the bioH2 production performance of the dark fermentation process showed that bioH2 production from poplar biomass using commercially available microorganisms had a competitive advantage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call