Abstract

ABSTRACTTraditional polymer composite preparation techniques often employ organic solvents, which can damage the environment, to disperse inorganic fillers. In this article, classic nanocomposites with poly(vinylidene fluoride) (PVDF) polymer matrices and BaTiO3 nanoparticle (BTP) fillers were created by a clean method combining planetary ball milling with an ultracentrifugal mill and then hot pressed into thin films. The microstructures, properties and relaxation dynamics of the thin films were characterized and analyzed. Scanning electron microscopy results demonstrated that BTP was homogeneously dispersed in the PVDF matrix. The thermal, mechanical, and dielectric properties were comparable to those of composite films prepared by solution mixing. Dielectric analysis revealed that the dielectric constant of the thin films reached 14 (104 Hz) when the volume fraction of BTP was 30%; however, the dielectric loss was 0.1 (104 Hz). Additionally, the dielectric loss spectra fitted with the Havriliak−Negami (H−N) and Vogel Fulcher equations were employed to analyze the relaxation dynamics of the nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47254.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.