Abstract

Motivated by the recent rise in need for refugee camps, we address one of the key infrastructural problems in the establishment process: The clean water network design problem. We formulate the problem as a biobjective integer programming problem and determine the locations of the water source, water distribution units and the overall network design (pipelines), considering the objectives of minimizing cost (total network length) and maximizing accessibility (total walking distance) simultaneously. We solve the resulting model using exact and heuristic approaches that find the set (or a subset) of Pareto solutions and a set of approximate Pareto solutions, respectively. We demonstrate the applicability of our approach on a real-life problem in Gaziantep refugee camp and provide a detailed comparison of the solution approaches. The novel biobjective approach we propose will help the decision makers to make more informed design decisions in refugee camps, considering the trade-off between the two key criteria of cost and accessibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call