Abstract

Multipath is one of the most challenging propagation conditions affecting global navigation satellite systems (GNSS), which must be mitigated in order to obtain reliable navigation information. In any case, the random multipath nature makes it difficult to anticipate and overcome. Therefore, for legacy GNSS signal performance assessment, modern GNSS signal design, and future GNSS-based applications, robustness to multipath is a fundamental criterion. Different multipath metrics exist in the literature, such as the MPEE, usually leading to analyses only valid for a dedicated receiver/signal combination and only providing information on the bias. This article presents a general criterion to characterize the multipath robustness of a generic band-limited signal (e.g., GNSS or radar), considering the joint delay-Doppler and phase estimation. This criterion is based on the Cramér–Rao bound, which makes it universal, regardless of the receiver architecture and the signal under analysis, and provides information on the actual achievable performance in terms of estimated time-delay (i.e., pseudorange) and Doppler frequency variances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.