Abstract

Enzymatic depolymerization of polysaccharides is often a key step in the production of fuels and chemicals from lignocellulosic biomass. Historically, model cellulose substrates have been utilized to reveal insights into enzymatic saccharification mechanisms. However, translating findings from model substrates to realistic biomass substrates is critical for evaluating enzyme performance. Here, we employ a commercial fungal enzyme cocktail, purified cellulosomes, and combinations of these two enzymatic systems to investigate saccharification mechanisms on corn stover deconstructed either via clean fractionation (CF) or deacetylated dilute sulfuric acid pretreatments. CF is an organosolv pretreatment method utilizing water, MIBK, and either acetone or ethanol with catalytic amounts of sulfuric acid to fractionate biomass components. The insoluble cellulose-enriched fraction (CEF) from CF contains mainly cellulose, with minor amounts of residual hemicellulose and lignin. Enzymatic digestions at both low and ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call