Abstract
Glubokoye Lake situated within the Chernobyl Exclusion Zone is highly contaminated with respect to radioactive caesium and strontium isotopes, which also is reflected in the contaminated fish. To utilize the fish resources in contaminated lakes, the present work presents for the first time the effectiveness of using clean feed to counteract contamination of radionuclides in fish. The study is based on a series of repeated experiments with Prussian carp (Carassius gibelio (Bloch, 1782)) kept in cages in the contaminated Glubokoye Lake during summer 2018–2021. By the addition of clean feed, the activity concentration of 137Cs in fish muscle tissues was lowered with a factor of 2–5 due to biodilution. Surprisingly, additional clean feed did not lead to further decrease in the uptake of 137Cs in fish.In contrast to 137Cs, the addition of clean feed increased the 90Sr activity concentration in fish by a factor of 2–4 compared to fish fed with naturally occurring feed items. Radioactive strontium accumulated mainly in the fish bones and the muscle tissue level was 2 orders of magnitude lower, similar to the distribution observed for stable Sr. By utilizing a new kinetic model describing the dynamics of strontium isotopes in bone tissues of fish, predictions fitted well with site-specific data, taking growth rates and aging into account. Results showed that clean feeding can be used to counteract high activity concentration of 137Cs in fish due to biodilution, but cannot counteract bioaccumulation of 90Sr. Findings highlighted that it is essential to understand underlying factors influencing the uptake pathways for contaminants, as access to clean feed could increase the growth and thereby reduce the body activity concentration of dietary associated radionuclides such as 137Cs (biodilution), as well as increase the transfer of dissolved compounds such as 90Sr directly from water to fish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.