Abstract
This work explores a green biopolymer (GBP) energy storage system to address the growing problem of microplastics that can harm our health. A GBP was made using solution casting with chitosan (CHN) and starch from potato (SPC) as the polymer hosts. Sodium thiocyanate (NaSCN) as Na+ cation provider and glycerol as an environmentally friendly plasticizer were mixed with CHN:SPC host polymers to prepare GBP electrolytes. The electrochemical impedance spectroscopy (EIS) results confirm the boost in DC conductivity. From the AC conductivity spectra, regions ascribing to EP and DC contributions are demonstrated. X-ray diffraction (XRD) and FTIR characterization provide evidence of salt dissociation and amorphous phase improvement. The determination of the ion fraction was achieved by means of TNM. The electrochemical stability of the conducting film was observed to be maintained up to 2.75 V. Cyclic voltammetry (CV), revealing no sign of charge transfer occurring through Faradaic processes at the interface between the electrode and electrolyte. The galvanostatic charge–discharge (GCD) plot displayed a triangular pattern, indicating a low voltage drop and a notable specific capacitance of 70 F/g. Moreover, the EDLC (electrical double-layer capacitor) exhibited an average power density of 1120 W/kg and an energy density of 9.11 Wh/kg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.