Abstract
An environmentally friendly, low-cost, and large-scale method is developed for fabrication of Cl-doped ZnO nanowire arrays (NWAs) on 3D graphene foam (Cl-ZnO NWAs/GF), and investigates its applications as a highly efficient field emitter and photocatalyst. The introduction of Cl-dopant in ZnO increases free electrons in the conduction band of ZnO and also leads to the rough surface of ZnO NWAs, which greatly improves the field emission properties of the Cl-ZnO NWAs/GF. The Cl-ZnO NWAs/GF demonstrates a low turn-on field (≈1.6 V μm(-1)), a high field enhancement factor (≈12844), and excellent field emission stability. Also, the Cl-ZnO NWAs/GF shows high photocatalytic efficiency under UV irradiation, enabling photodegradation of organic dyes such as RhB within ≈75 min, with excellent recyclability. The excellent photocatalytic performance of the Cl-ZnO NWAs/GF originates from the highly efficient charge separation efficiency at the heterointerface of Cl-ZnO and GF, as well as improved electron transport efficiency due to the doping of Cl. These results open up new possibilities of using Cl-ZnO and graphene-based hybrid nanostructures for various functional devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.