Abstract
Chloride channel-3 (CLCN3), a crucial component of the voltage-gated chloride channel family, is implicated in numerous physiological and pathophysiological processes. This study aimed to investigate the characteristics of CLCN3 in pancancer and its influence on the immune response through the use of a range of databases. Concurrently, we assessed the impact of CLCN3 on the proliferation of ovarian cancer (OC) cells and explored its potential mechanisms. We employed the Tumor Immune Estimation Resource (TIMER) 2.0 and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases to examine the messenger RNA (mRNA) and the protein expression of CLCN3 across various cancers. The prognostic significance of CLCN3 was evaluated using the Gene Expression Profiling Interactive Analysis 2.0 (GEPIA 2.0) database. The University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) facilitated the analysis of CLCN3 promoter methylation levels. The association between CLCN3 expression and tumor-infiltrating immune cells was investigated using various algorithms. The cBioportal database facilitated the analysis of CLCN3 mutations and mutation sites across various cancers. The Tumor-Immune System Interactions Database (TISIDB) database was employed to explore the correlation between CLCN3 expression and immune or molecular subtypes across a variety of cancer types. We collected ovarian tissue samples, encompassing both normal ovarian and OC tissues. The human OC cell lines, SKOV3 cells and OVCAR433 cells, were cultured. CLCN3 expression was determined via reverse-transcription quantitative polymerase chain reaction (RT-qPCR), while phosphatidylinositol 3-kinase/Akt kinase (PI3K/AKT) expression was detected using Western blot. We utilized small interfering RNA (siRNA) technology to suppress CLCN3 expression. The proliferative capacity of SKOV3 and OVCAR433 cells was assessed using the Cell Counting Kit 8 (CCK-8) assay. CLCN3 demonstrated an aberrant expression in a number of cancer types and was markedly reduced in OC tissues. Poor prognosis in cervical squamous cell cancer and myeloid leukemia was linked to excessive expression of CLCN3. The examination of immune cell infiltration, which included CD8+ T cells, B cells, T regulatory cells, and cancer-associated fibroblast cells, showed a strong association with aberrant CLCN3 expression. Following the use of siRNA technology, the ability of the ovarian carcinoma cell line SKOV3 and OVCAR433 to proliferate as well as the expression of PI3K/AKT both increased. CLCN3 is a possible biomarker for immune-related processes and the prognosis of cancer, and the PI3K/AKT signaling pathway may affect OC cells' ability to proliferate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.