Abstract

ClC-2 Cl- channels represent a potential target for therapy in cystic fibrosis. Key questions regarding the feasibility of using ClC-2 as a therapeutic target are addressed in the present studies, including whether the channels are present in human lung epithelia and whether activators of the channel can be identified. Two new mechanisms of activation of human recombinant ClC-2 Cl- channels expressed in HEK-293 cells were identified: amidation with glycine methyl ester catalyzed by 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) and treatment with acid-activated omeprazole. ClC-2 mRNA was detected by RT-PCR. Channel function was assessed by measuring Cl- currents by patch clamp in the presence of a cAMP-dependent protein kinase (PKA) inhibitor, myristoylated protein kinase inhibitor, to prevent PKA-activated Cl- currents. Calu-3, A549, and BEAS-2B cell lines derived from different human lung epithelia contained ClC-2 mRNA, and Cl- currents were increased by amidation, acid-activated omeprazole, and arachidonic acid. Similar results were obtained with buccal cells from healthy individuals and cystic fibrosis patients. The ClC-2 Cl- channel is thus a potential target for therapy in cystic fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.